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Introduction.

Within our previous report[l] we have described a digital computer architecture,

the HOPLA, and algorithms which effectively exploit that architecture. Within the

present report, we shall examine the theoretical performance of an HOPLA implementing

various configurations of the multiread function.

The present report consists of five sections: The first section consists of a review

of the semi-quantitative analysis of the N4 interconnect. In the next section we shall apply

this analysis to the case of the proposed HOPLA implementation. Proceeding with the

results from this section, we shall then consider the required thresholds and reliability

levels of the system under various operating conditions. Finally, we shall consider the

effects of operation at very low power levels with an emphasis on the effects of shot

noise.

1. Interconnect Analysis.

Within the present section we shall review the semi-quantitative constraints upon

N 4 interconnects described in references [2] and [3]. We shall consider the impact of

these constraints upon the general HOPLA designs, employing our current laboratory

design as an example. We shall then consider the unique properties of our proposed

multiread implementations with regard to the constraints cited.
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1.1. Layout and Overview.

We shall now describe the idealized layout of an N 4 interconnect and define the

variables employed.

The N4 interconnect consists of three major components: A Page Oriented

Holographic Memory (POHM) consisting of an array of adjacent Fourier transform

holograms, a Spatial Light Modulator (SLM) sandwiched between a pair of lenses of

focal length f and a detector array. The POHM and the detector array are located at one

focal length to either side of the SLM as indicated within Figure 1.4. The arrangement of

the detector array is proportional to that of the POHM array, with a detector located at the

conjugate point of each hologram.

The operation of the hologram is as follows: A conjugate reconstruction beam

illuminates the POHM array. Each of the holograms simultaneously project a different

control mask upon the SLM and lens arrangement, and then focus upon the detector

array. Since each control mask is projected at a differing angle, it comes to a focus at a

different location on the detector array, specifically, the conjugate location of the

hologram from which it originates. In this manner, each bright pixel within the control

mask connects that location on the SLM to the detector associated with the mask. In this

manner we may arbitrarily connect the contents of the SLM to the elements of the

detector array.

Within our discussion of the properties of the N 4 interconnect, we shall employ

the nomenclature of reference [4] unless otherwise noted. To wit: The SLM consists of

an NsxN, arrangement of pixels, each pixel with a side dimension of Ps with a spacing of
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d, resulting in an overall dimension of S. The POHM consists of an NhxNh arrangement

of holograms, each hologram having a diameter of Ph and a spacing of dh resulting in an

overall dimension of H. The detector array consists of an NdxNd arrangement of

detectors, each detector with a side dimension of Pd with a spacing of dd resulting in an

overall dimension of H. The operating wavelength of the system is X. Finally, the

reconstruction beam angle is 0 r

When employing Fourier transforms, we shall employ the nomenclature of

reference [5] in preference to that of reference [3]. Specifically, when referring to Fourier

transform pairs, we shall employ lowercase letters for the original function and uppercase

letters for the associated Fourier transforms.

We shall define the function ceil(x) as returning the smallest integer value which

is greater than or equal to the value of the argument. For example cei1(4.5)=5 and

ceil(3)=3. We shall denote the base 2 logarithm as 1og2

1.2. Parameters for the Multiread Function.

In the case of the multiread function, many of the parameters of the previous

section are dependent upon the number of inputs to the function. Thus, given the

parameters of the SLM it is possible to infer many of the remaining values.

As we have noted within our previous report[l], given 2m inputs, the basic

multiread function returns 2m outputs. Thus, given an SLM consisting of N, 2 pixels, each

pixel corresponding to an input, the corresponding value of m is:
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m =2 ceitl Iog 2(N~jJ [1]

Several additional outputs are required if we are to employ error correction within

the multiread function. In the case of Extended Hamming Code (EHC), t error correction

bits are sufficient to correct for 21-1-1 address bits. As with address bits, the multiread

function employs two outputs for each bit employed. Thus given a value of I such that:

m < 21-t-J [21

We must incorporate 21 additional outputs in order to obtain error correction.

Once the number of outputs have been selected, it is then possible to determine

the arrangement and dimensions of both the hologram and detector arrays. Given m

inputs, the arrangement of the hologram array is:

Nh=ceill\¼(2m)] [31

If we assume that the overall dimension H of the hologram is equal to that of the

SLM S, then we may immediately infer the spacing of the holograms involved:

dh=H/Nh [41

The arrangement of the detector array is, by necessity, always proportional to that

of the hologram array (i.e. Nd=Nh). In most cases, the dimensions and arrangement of the

detector are the same as those of the hologram array. This is convenient, in that it allows
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the same resolution limits to be applied to both arrays. This is feasible, given that the

total number of outputs employed within the multiread function is relatively small, and it

is most likely that arrangements of discrete detectors would be employed. Which, in

turn, allows for considerable flexibility in their arrangement. Within the current

discussion we shall assume that the dimensions of the detector and hologram are equal

(i. e. rdd= dh).-

2. Semi-Quantitative Constraints

We shall now review the general constraints upon the N 4 interconnect described

within references [3] and [4].

We begin by defining several geometrical properties of the system. We designate

the maximal angle of the beams incident upon the SLM as Omax, which has the value of:

OMax= (l/2)arctan/H/(Y2f)J [51

We shall denote the maximal distance between the hologram plane and SLM

plane as r which we approximate as r-flcosOmax.

Given these geometrical factors we may then impose the first constraint.

Assuming diffraction limited performance, it is necessary for each hologram within the

array to be sufficiently large as to be able to resolve the individual pixels of the SLM.

Reference [41 expresses this constraint as:
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d,>_2.44 XHl2 [61
Phsin(2Omax)

Since the values of H,d, and X are generally fixed by practical considerations.

The effect of this constraint is to set a lower limit upon the size of the individual

holograms employed (Ph) as a function of the focal length f of the system. In general, we

wish to select a value of f that allows for a value of ph such that the individual holograms

do not overlap (i.e.: ph!dh). This constraint is not absolute, in that the individual

holograms may overlap, but such overlap results in reduced efficiency and increased

levels of crosstalk. In addition, an array employing non-overlapping holograms may be

used to implement the window set function, as per our previous report[l].

A second constraint upon the value of f is that as the value of f decreases, the

value of Omax increases. Broad variations of the incident angle result in several

undesirable effects. Most notably, nearly every SLM that may be employed within the

system displays a strong sensitivity to variations in angle. Reference [41 derives several

limits upon the contrast level of polarization modulation based SLMs as a result of the

variation in angle. These constraints are based upon the limits of the polarization

components employed. The maximum contrast ratio Rm possible employing ideal

polarization analyzers is:

Rm 4n [7]
ir2 sin(0m0aJ 4

Where n is the index of refraction of the active material of the SLM. A similar

degree of variation is encountered as a result of path length variations encountered within

SLMs that employ linear birefringence[4]. Magnetooptic devices differ from other

devices in their angular sensitivity[41, but it is likely that path length variations alone will
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lead to similar results. It is most likely that the angular sensitivity of the anti-reflection

coating employed within magnetooptic SLMs [6] will predominate over simpler

polarization effects. Obviously, given the high fan-ins associated with our architecture, it

is very important to achieve the highest possible contrast within the system.

Besides the angular variation of the SLM, several other simpler geometric effects

lead to angular sensitivity within the system. Most notably there is the elongation of the

image beam projected upon the hologram or detector plane, which is proportional to

J/cosO, and the variation in intensity of the image, which is proportional to cos40.

Although these effects do complicate recording and playback, the bulk of the ill effects

may be eliminated by proper calibration methods.

Table 1. summarizes the variables and equations that have been employed so far,

and provides representative values for the prototype system that we have constructed.

3. Constraints Specific to the Multiread Function

Within the present section, we shall analyze the operation of an implementation of

the multiread function upon an N4 interconnect. We shall then discuss the constraints

operating upon the system as a result of this analysis.

3.1. Diffraction Effects.

As we have previously noted, one of the primary advantages of the multiread

function as a test pattern, is that it employs a regular and easily verified set of control

masks. We shall now exploit this advantage to obtain explicit formulations of the Fourier
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transform pairs of the control masks that we anticipate using. Given these transform

pairs, we may then easily calculate the Fraunhofer diffraction pattern of a given mask,

and employ it to analyze hologram formation and reconstruction.

3.1.1. The Morton Order

We shall first consider masks arranged employing the Morton order, as defined

within Our previous report[l]. As we have noted previously, the control masks generated

by the Morton order are identical to those employing the raster scan order with the

exception of the assignment of the outputs. Figure 2.11 illustrates a set of Morton order

control masks for a 256x256 input matrix.

As we may see, the required masks associated with the Morton order consist of a

set of basic forms, and three 900 rotations of the each of these forms. We shall employ

the index k to designate each basic form, in order of increasing resolution. For the sake of

convenience we define three new variables, n,a and b:

n = ceilllog2 (Nj)j [81

bk=2nk-f [91

ak=2k [101

2 akbk=N, [11]

Using these variables we may define the basic forms of the Morton order mask.

The kth mask consists of ak vertical bright stripes bk pixels wide, interspersed with an

equal number of dark stripes of equal width, the top stripe being dark. Figure 1 illustrates

this arrangement. We further assume that the inter-pixel region is opaque.
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Using the nomenclature and formulas of reference [5], we define the function

grate:

N12
grate(N,d,x)= I {(Ix-(m+12)dI+81x+(m+1l2)dj) [121

m=J

The grate function consists of N delta functions, equally spaced with a separation

of d. The Fourier transform of this function is well known [7]:

GRA TE(N, d,x')=sin(lrNdx') [131
sin(7tdx')

Where x',y' are coordinates in the frequency plane

Given the grate function, it is possible to express the kth Morton order mask

mk(x,y) in terms of a series of separable convolutions:

mk(x,y)=grate(N,,ds,y)lgrate(ak,2bkds,x) [141

*gra te(bk, ds,x)* 8(x-bkds)]* rect(x/ps, y/ps)

Where * denotes the convolution operator. The corresponding Fourier transform

Mk(X',y') is:

Mk(X',y' )=exp(-ilrbkdx' )Ps2 simc(psx ',Psy') [15]

GRA 'E(NS, d5,y' )GRA I'E(ak,2bkds,x' )GRA TE(b, d5,x')

It is possible to rework the product of the rightmost two functions in order to

obtain a more intuitive result:

GRA TE(ak2bkdx' )GRA TE(bk, d5,x') [161
=sin(72akbk__xd x'( )

sin(1[2bkd,,x' ) sin(ldsx' )

given 2akbk=Ns
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-Sin(7CNdxj sin(1bkdjxj [17]
sin(7rdcx') sin(lr2bkdlx')

Employing the double angle identity

=Sin(IEN dx__ 1 [181
sin(7rdsx') 2cos(7r2bgdx')

=Sin(IdN dx__sec(7t2bkd~x') [191
2sin(7tdx' )

Resulting in the following form of Mk(x',y') is:

Mk(X',y' ) = (1/2)exp(-iltbkd x')ps2sinc(psx',psy') [201

GRA TE(Ns, ds,y' )GRA TE(Ns, dx' )sec(72bkd~x')

We may interpret this form of the Fourier transform as follows: With the

exception of the first and last factors, the transform is identical to that of the blank SLM

with all pixels set bright. The first term is simply a result of the shift theorem, indicating

the asymmetric arrangement of the stripe pattern within the mask. The final term reflects

the influence of the mask pattern upon the transformed image. Given that:

Ns/bk=2k+! [211

We may see that the period of the secant function and the numerator of the

GRATE function coincide, effectively suppressing any singularities encountered. The

overall effect of the secant term is to emphasize the maxima that would occur if the stripe

pattern were the sole component of the function. This pattern effectively "beats" with the

pattern generated by the presence of pixels. It is important to note that, with the

exception of those canceled by the secant function, the zeros of the GRATE function

occur at the same period as the "all bright" SLM indicating a function consisting of a

series of narrow, sharp peaks.
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The generation of the masks required for a Morton order implementation of the

multiread function requires two steps: First, the basic form masks mk(xy) are generated

for the values of k=O,1...(n-1). Then, each of these masks are subjected to three 90*

rotations, resulting in the functions mk(-x,-y), mk(yx) and mk(-y,-x). Obviously, the

transforms of these masks may be generated in the same manner.

3.1.2. The Grey Coded Morton Order.

As we have seen within our previous report[I], if we employ the canonical Grey

code enumeration, the pattern of the Morton order encoded masks changes. Although the

mo mask and its rotations are still encountered, the remaining basic form masks

incorporate a centered series of ak.1 bright vertical stripes of width bk., pixels. In order to

obtain a full set of masks, the basic form masks are subjected to a single 90* rotation, and

the light and dark pixels are interchanged in both the original form and the rotated form

to obtain the required masks.

As in the last section, we may express the k=J,2,...(n-l) masks as a series of

convolutions:

mgrey k(xjy)=grate(N~•,dsy)[grate(ak,, 2 bk-lds,x) [221

*grate(bk., d,xx)J]*rec(x/ps,y/ps)

We may note that this function is identical to that of the conventionally coded

form, except for the absence of the B(x-bkds) term employed to offset the stripes in the

original formulation. For this reason the Fourier transform is nearly identical to that of

the previous function:
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Mgrey k(X', y') = (1/2)ps2 sinc(pvx' , PsY') [231

GRA TE(NS, ds,y' )GRA TE(Ns, dx')sec(7t2bkjdsx')

The results are identical, except for the presence of the exp(-i71bk-qd.x') phase

factor, and the k-1 indices which indicate that the spatial frequency of the stripes in each

mask is half that of the masks of the previous section. Otherwise, the analysis of the

previous section is valid for this section.

As we have noted above, it necessary to interchange the bright and dark pixels

within the images employed in order to obtain the required masks. For this reason it is

necessary to calculate the Fourier transform of these inverted masks. We may achieve

this result by subtracting the mgrey k masks from an "all bright" SLM pattern to obtain the

inverted m'grey kmask. The corresponding transform is:

M' grey k(x',y') = (l/2)ps2sinc(px',psy') [241

GRA TE(Ns, dy' ) GRA TE(NS, d,x' )12-sec(7t2bk. dsx')]

We may see that the added terms associated with this function result from the

presence of half width bright stripes appearing at the edge of the masks.

In order to generate all of the masks required for the Grey coded Morton order, it

is necessary to generate the mgreyk(xy) and m'grey k(x,y) masks for the values

k=1,2,...,(n-l). It is then necessary to rotate these masks 900 to obtain the mgreyk(YX)

and m'greyk(yx) masks. It is also necessary to generate the mo(x,y), mo(-x,-y), mo(yx) and

mo(-y,-x) masks. Once again, the transforms of these masks may be generated in the

same manner.
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3.1.3 Hilbert Curve Order

Another of the orders that we may employ to generate control masks is the Hilbert

curve order. As we have noted previously, the masks generated either produce

checkerboard pattern masks, or masks arranged in a fractal pattern. We have argued that

the intricate texture of fractal patterns should result in more uniform diffraction patterns.

Unfortunately, it is the same intricate texture that greatly complicate the evaluation of the

Fourier transform. Although simple expressions for such transforms are not presented,

we do present a recursive expression that should greatly simplify automatic evaluation of

the transforms.

We shall begin by considering the Fourier transform of the checkerboard control

masks. We may express a checkerboard as the superposition of two grids, each offset

from the origin by one quarter the spacing of the grid:

ch(N,d,x,y) =grate(N12,2d,x,y) [251

* 18(x-d/2,y-dl2) + (x-d/2,y-dl2)J

where

grate(N,d,x,y)=grate(N,d,x)grate(N,d,y) [261

The Fourier transform is simply:

CH(Nd,x',y')=2GRA TE(NI2,2d,x',y')cosl7gd(x' +y')J [271

In the k"h mask, each square is bkxbk pixels large. Incorporating the effects of

pixels:

mncheck k(x,y)=grate(b,ds,x,y)*ch(2a,bds) [281

* rect(x/psy/pJ)

Resulting in the Fourier transform:
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Mcheck k(Xy) = GRA TE(b, dx,xy)GRA TE(a,2bdsx,y) [291

cosIltd,(x' +y')]Ps2 smc(p.'xP',PsY')

Reworking the GRATE functions in the same manner as the last section:

Mcheck k(X',y' )=GRA TE(N•,ds,x',y' )cost[rds(x' +y')J [301

sec(7Cbdsx')sec(itbdsy')ps2sinc(p,,x',p~y' )/2

This transform is similar to those in the previous section with the exception of the

diagonal cosine term, which arises from the initial offset of the two grids.

In order to generate the required masks, it is also necessary to generate a 90°

rotation of the mcheck k mask.

We shall now consider the evaluation of the Fourier transforms of the fractal

control masks. In our previous report[l] the primary means of generating the Hilbert

curve was to employ Butz's algorithm[8J, which was well suited to simple generation by

computers. We shall now describe a more intuitive means of generating the Hilbert curve

and derive an appropriate recursive formulation of our masks.

We shall now consider the "seed" method of generating a Hilbert curve[9]. We

begin with the simplest possible approximation to the Hilbert curve, one which connects

four points, and employ it as our seed value, as per figure 1. We then generate four half

size copies of the seed curve and arrange them in the manner illustrated in figure 1

connecting adjacent end points. This results in the next finer Hilbert curve. If we repeat

the process this time, employing our previous result as the seed value, then we obtain the

next finer Hilbert curve. By recursively applying this method, we may generate any

resolution of Hilbert curve required.
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We may employ the same method to generate our control masks. If we use the

two lowest resolution masks (those associated with the two most significant bits) as our

seed masks, we may recursively generate the remaining finer masks in the same fashion

as we generated the Hilbert curve (as per figure 1). The reason why this works is that a

control mask of a given resolution is only dependent upon the Hilbert curve of the same

resolution.

We may describe this in terms of a recursive formula, if mk(x,y) is the function for

the kth mask with dimensions SxS, then the formula for mk+2(x,y) is:

mk+2(x,Yy) = mk(21y+ S/4],21x+ S/41) [311

"+ mk( 2 [x+ S141,21y-S/41)

"+ mk(21x-S/41,21y-S/41)

"+ Mk(2[-y-S141,21-x-S/41)

The Fourier transform of this formula is:

Mk+2 (x',y')=(114)expli7t(x' +y')S/2]Mk(y'/2,x'12) [321

"+ (114)explil(x' -y')S/2]Mk(x'12,y'/2)

"+ (114)expl-i7t(x' +y')SI2]Mk(x'12,y'12)

"+ (114)expli7l(-x' +y')S/2]Mk(y'12,x'12)

Thus given the value of Mo(x',y') and Mj(x',y') it is possible to compute the

Fourier transform of any desired fractal control mask. The task may be further simplified

by defining mo(x,y) and m,(xy) in terms of delta functions. For example, the values for

normal enumeration are:

mo=&(x-S/4,y-SI4)+ 8(x-S/4,y+ S14) 1331

mI =8(x+ S14,y-S/4) + 8(x-S/4,y+ S/4) [341

The values for the Grey code enumeration are:
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m0r=8(x-S/4,y-S14)+ 8(x-S14,y+ S14) [351

m 1 =8(x-SI4,y-S/4) + 8(x+ S/4,y-SI4) [361

Figure 2 illustrates the form of these seed values. The resulting mask patterns may

then be "filled out" by convolution.

Given the structure of the recursive definition, it is possible to anticipate a

smoother set of transforms than the Morton order. On the other hand, it is also clear that

the high degree of self-similarity within such a fractal process will ensure a considerable

number of local maxima.

3.2. Analysis of diffraction patterns

Having determined Fourier transforms of the various control masks that may be

encountered within our project, we may then calculate the impact of these functions upon

our capacity to record and reconstruct our desired control masks.

We shall now consider the following arrangement, our desired mask mk(x,y) is

illuminated by a beam of collimated coherent light, and then propagates a distance I

before encountering a lens of focal length f and then continues to the back focal plane of

the lens as per figure 3. The resulting Fraunhofer diffraction pattern is given by the

following formula[5J (discarding constant phase factors):

I(x,y)=(Ao/ik•.expl(i21tl,%)(t+fl) [371

exp{ilt(f-I)/(•f 2)(x2 +y2)]

Mk(XAf y/A)
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Where Ao denotes the net intensity of the diffracted image. Employing this

equation we may determine the diffraction pattern impinging upon the hologram plane

during recording and upon the detector plane during reconstruction.

3.2.1. Effects upon Holographic Recording.

Given the ideal diffraction pattern generated by a given control mask, we may

make several observations upon the influence of the pattern upon the recording and

reconstruction of the holographic image.

We shall first consider the holographic recording process. In the case of a thin

hologram, the image beam I(x,y), consisting of the diffraction pattern of our desired mask

is combined with an plane wave which serves as the reference beam R(x,y):

R(x,y)=A rexp[(i2l1r/)sinO,xl [381

The two beams combine and interfere at the surface of the holographic plate to

form an intensity pattern which is recorded by the photographic material. The recorded

intensity pattern may be expressed as:

U(x,y)= R(x,y)+I(x,y) 2 1391

U(xy)=IR(xy)+I(xy)1 R(xy)+I(x,y)l* 1401

U(x,y)=R(x,y)R(x,y)*+I(x,y)R(x,y)* 1411

+Rt(x,y)l(x, y)*+1(x,y)l(x,y)"

Where * denotes the complex conjugate operation. Each term of this well known

equation designates a feature of the resulting hologram. The first term RR* is merely the

constant bias introduced by the presence of the reference beam, while the fourth term /I*

is the autocorrelation function of the control mask being recorded forming the

intermodulation term. The second and third terms are the components that contribute to
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the reconstruction of the image and its complex conjugate.

We may determine several effects arising from the recording process. Obviously,

we do not wish to generate a pattern with features smaller than that of resolution of the

film employed v. Given that the finest features of the diffraction patterns of the Morton

order masks and the Checkerboard masks are the zeros of the GRATE/Ns,d•,x/(Xf),y/(Xf)J

function. Given the minimal spacing of these values, the resulting constraint takes the

form:

v < XflNsd, [421

Which is identical to the constraint arrived at by reference [31. In addition, the

resolution of the interference pattern generated between the image and reference beam

should be within that of the film. If we assume, for simplicity, the Morton order and that

I=f (allowing us to discard the quadratic phase factor of equation[5J) them we may

assume that I(x,y) is of piecewise continuous phase. The local interference pattern is

proportional to:

sin((2l7rA)sinOx) [431

Resulting in the constraint:

v < sin(Or)/X [441
The other effect arising during the recording process which is of interest, is the

influence of the H* intermodulation term. The overall effect of this term is to introduce

noise into the reconstruction process, both directly, and by exhausting the dynamic range

of the recording material. For this reason, when recording a transmission hologram it is

desirable to select a ratio between the image beam intensity and the reference beam

intensity which is sufficient to allow the other terms to predominate over the effects of
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this intermodulation. Unfortunately, in the case of images which posses sharply peaked

autocorrelation functions, it is impossible to select a ratio which is valid for all areas of

the diffraction pattern. The practical result of this effect is a loss of overall diffraction

efficiency and contrast. Within our previous report[l] we have considered various means

by which we may counteract this effect. Of course, the simplest method to avoid such

effects is to employ masks that contain relatively smooth autocorrelation patterns. As we

have noted previously, this is one of the primary advantages of the Hilbert order control

masks.

Our holographic recording process differs considerably from that of the simple

thin hologram model. The holographic media employed is sufficiently thick as to display

properties of both thin and thick holograms. In addition our processing employs

rehalogenation bleaching, resulting in phase holograms. In fact, the specific process of

grain migration employed serves as a high-pass spatial filter, eliminating constant and

low frequency terms from the recording process. In addition, the high degree of

aberration of the lenses employed, as well as the variations in propagation distance for

different channels result in considerable variation from the ideal diffraction patterns

described. For this reason, the validity of theoretical models, beyond setting fundamental

constraints upon operation, may prove to be rather questionable.

3.2.2. Diffraction Effects Upon Crosstalk

We shall now consider the effect of diffraction upon crosstalk between separate

channels, both within the input and output functions. We shall then discuss the influence

of various features of our specific application upon the effects of crosstalk.
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We begin by considering the reconstruction of our control masks. We begin by

assuming that we have selected a reference beam angle sufficient such that the

reconstruction beam clears the remainder of the components after illuminating the

hologram. In addition we shall assume that our processing is sufficiently linear as to

largely suppress the presence of higher diffraction orders, and generates an image of high

fidelity. Given these assumptions, the primary source of distortion in reconstruction is the

finite size of the hologram. We may represent this effect by convolving the original

hologram by the Fourier transform of the aperture, i.e.:

mrecon(x,y) = m(x,y)* (ltdhl4)somblrl(dhkJ,) [45 1

The net effect of which is to introduce a spreading of the boundaries of the control

mask. This, combined with the finite contrast of both the holographic image and the

SLM cause true input values within the false regions of the control mask to have non-

zero values. A sufficient number of these values shall result in the generation of false

alarms. For this reason it is necessary to examine the tradeoffs between resolution and

contrast when selecting the focal length of the system. It is important to note that in the

case of Morton order masks, it is possible to blur the mask along the direction of the

stripes with no ill effects. Thus it may prove possible to obtain lower crosstalk by

tessalating the hologram array with oblong masks.

The second source of crosstalk within the system arises from the diffraction

pattern generated at the detector location. The signal traveling from the SLM to the

detector encounters the same diffraction effects as the image beam encounters during

exposures. Therefore, the outer lobes of the diffraction pattern will overlap with adjacent

detectors causing crosstalk. In the worst case, the input stored upon the SLM contains a
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random distribution of pixels, resulting in a diffraction pattern corresponding to that of a

single pixel. Assuming operation near the diffraction limit, a worst case 4% degree of

crosstalk has been numerically calculated within reference [21. It is therefore once again

desirable to select a value off such that the system is well within diffraction limits.

3.2.3. Analysis of Crosstalk Results

At this point, it is important to make several important observations with regard to

the specific effects of crosstalk upon the multiread function. Given m outputs, at most

m12 outputs may be dark at any time. If s outputs are dark, then the maximum number of

true values within the inputs that may be true is 2m12-s. In such a worst case situation, s

light outputs complementary to that of the dark values are connected to half of the true

values (2m12s-), and the remaining outputs are connected to a quarter of the true values

(2m/2-s-2). Similarly, it is possible to show, using hash collision formulas, that small

numbers (-8) of randomly activated pixels have a high probability of activating all

outputs.

In addition, given that the error correction methods described within our previous

report are particularly sensitive to false negatives, allowing us to set our threshold of

detection at a relatively high level while retaining high reliability.

The practical implications of these observations are that if we segregate

complementary outputs, we may calculate our maximum level of tolerable crosstalk

assuming that only a quarter of the input values are activated. Thus if co is the maximum

crosstalk arriving at any one output channel, and Po is the intensity of a single true pixel,

then the maximum tolerable size of the SLM is:

Page 21



N,•<'(2Ico) [461

In reality, the maximum level of tolerable crosstalk is certainly much higher,

since the distribution of the true values in the worst case, are in the same form as an one

of the control mask, resulting in much tighter diffraction pattern, than previously noted.

In the case of applications such as single pixel detection, or the detection of smaller

window sets, the crosstalk limitation should be considerably smaller.

Finally, the form of the algorithms employed may be made resilient to crosstalk

induced errors. For example, in the case of the second algorithm, the only effect of false

dark values is to cause a greater number of cycles to be used in the execution of the

algorithm.

4. Power Consumption Considerations:

We shall now consider the power required to operate our proposed system under

various modes of operation.

4.1. Power Consumption Under Conventional Conditions

We shall begin by considering the simplest mode of operation for our proposed

system, what we shall refer to as conventional operation. Under conventional operation,

the holographic array is uniformly illuminated by a flash of light sufficiently intense as to

trigger any detector that should record a bright result.
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Under such a situation, it is necessary to provide each pixel of each control mask

twice the sufficient energy to activate the detector element which it is connected to. If we

set P0 to twice the value of the threshold, and assume 2m outputs then the total

conventional power consumption PT is equal to:

P= (PoNs2m)/(ehaqeff) [471

Where eh is the diffraction efficiency of the hologram employed, a is the net

losses due to the attenuation of the SLM and the effects of diffraction and qeff is the

quantum efficiency of the detector. These figures are particularly high, since the

multiread function employs masks that illuminate half of the SLM at any one time.

It is possible to double the number of operations involved without increasing the

energy cost by implementing both the I and the d functions in the same architecture. The

polarization encoding scheme described within our previous report[l] is a specific

example. The power advantage encountered in this case is a result of the fact that the

light discarded within the evaluation of the I function is employed within the evaluation

of the d function.

Given that the total number of effective logical operations performed in the

evaluation of the multiread function is 2mNs2 the energy required per operation is

PoI(ehaqeff) a value comparable to that of conventional systems, a result of worst case

operations occurring when a single pixel is activated. Of course, the HOPLA performs

the entire set of operations simultaneously with a far smaller number of independent

active elements.
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4.2. Alternative Operation Scheme

In the previous section, we assumed that it was-necessary to provide each pixel

within the input with sufficient energy to independently trigger the threshold of each of

the detectors to which it was connected. When, as in most cases, multiple pixels are

active the additional energy is effectively wasted. In the case of the HOPLA, the power

which is distributed to each pixel is dependent upon the level of illumination of the

hologram associated with a given detector. This provides a means, in theory, of limiting

the amount of energy required for the evaluation of each output.

Our proposed scheme for limiting the net quantity of power expended upon

evaluation is as follows: Each (non-overlapping) hologram within the system is

independently illuminated by a laser of constant power output. The detector array

employs integrating detectors, which generate an output signal as the threshold of the unit

is reached. Once the output signal is generated, the corresponding illumination laser is

deactivated. The result of this scheme that each true value received is only sufficient to

trigger the threshold, and the total power expended is the threshold power times the

portion of the control mask obscured. The power expended in the evaluation of a false

signal remains the same as that of the conventional operation. The average power

consumption of the resulting architecture will be greatly reduced.

Obviously, such a scheme of operation is not a very practical mode of operation,

but, such a configuration does allow for the evaluation of the one of the more intriguing

possibilities associated with this architecture, switching which is achieved at exceedingly

low optical power.
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4.3 Very Low Power Switching

We have seen that within the alternative operating scheme the average amount of

energy reaching each active element is equal to twice the threshold value of the active

element. Under ideal conditions this value is limited by the effects of shot noise. Under

such circumstances, the required threshold energy may be exceedingly low. Given that

each active component preforms the equivalent of a large number of individual logical

operations the potential cost per each operation is potentially smaller than any other

known scheme for evaluating logical operations. Within the present section, we shall first

consider the possible energy costs involved and then argue the significance of this figure.

When the alternative operating scheme is in use, the energy 8e employed to switch

each detector or active element to achieve an output is equal to the difference between the

threshold value and the background level detected when a false value occurs. We shall

now consider the minimum practical value for this threshold.

Let us consider the wavefront from one of the holograms immediately after it has

passed through the SLM. The pattern consists of a plane wave containing the product of

the input signal and the control mask. The only information contained within this

wavefront is the locations of the inputs which are transmissive, and the direction of

propagation. Between this point and the detector the wavefront converges to generate the

signal which results in the output. Between these two points the computation occurs. The

total energy contained within the wavefront mediating the operation is equal to the

switching energy. As we have seen, it may require considerably more energy to set up

the computation, but this additional energy does not take part in the actual computation.

For this reason we may contend that the actual power employed to actually mediate the
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computation is equal to the switching power.

It is therefore desirable to determine the smallest threshold value that may be

employed to operate the system. Given that we are employing the alternative operating

scheme, the influence of crosstalk is negligible, since each detector shall only receive

sufficient energy to trigger it. If we employ a stable, single mode laser, the only absolute

limit to the point at which we may set out threshold is the presence of Poisson shot

noise[10]. This noise occurs as a result of the quantization of light, and serves as a source

of noise that cannot be eliminated from the present arrangement.

4.3.1. Threshold Values

We shall thus calculate the required threshold under the shot noise limit. At the

level at which shot noise becomes appreciable, the effects of the quantization of light are

present and we must treat the intensity pattern impinging upon the detector as a collection

of photons. We shall employ the semi-classical model for photoelectric detection[ 11],

assuming that the mean number of photon counts that may be anticipated at a given

sampling area over a given amount of time is proportional to the classical irradiance

anticipated at that same point:

Kmen,,= I 22L/h [481

Where 1:2 is the classical intensity over the sample area and Kmean is the

average number of photon counts encountered. In the case of stable single mode laser

radiation, the distribution of the number of photon counts about the mean is a function of

Page 26



the Poisson distribution[ 1 ]:

P(K,Kmean) = (KmeanK/K!)exp(-Kmen) [491

Where P(K,Kmean) is the probability of K counts occurring during a given

sampling period. Note that K is always an integer value, and P is a discrete probability

function.

Given the presence of such noise, we wish to devise an optimal means of

discerning the presence of a signal within the noise, and then determining the degree of

error arising from such noise.

We begin by defining the nature of the signal that we wish to detect. During each

sampling period, our signal may be in either of two states, true (bright), or false (dark).

In the false or dark state, an average of nb counts are received, due to the presence of a

constant background bias. In the case of a true or bright state, an average of (ns+nb)

counts are received, consisting of the background signal and a signal from at least one

true input. Of course, the signals arising from either state are subject to variations arising

from shot noise. For this reason, it is necessary to devise a strategy for deciding whether

a given sample value arises from a bright or dark state.

We shall employ the Maximum Likelihood (ML) decision strategy. This strategy

selects the state that is most probable given the sample value. Given a sample of K

counts, we shall assume that it is a result of a bright state when the probability of it

occurring is greater than that of dark state:
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p(K, (n,+ nb))> p(K, nb) [501

Given that the two probability functions only intersect at a single point, it is

possible to represent this decision as a threshold:

K> K7, [51]

Where KT is defined by the expression:

p(K7, (n,+ nb)) =p(K7 f nb) [521

Which we may express as:

l(n.+ nb)IK ,!Iexp(-ns-nb) = InbIKr]'exp(-nb)J [531

Taking the natural logarithm (In) of both sides we obtain:

K7,ln(n,+ nb)-ln(KrT!)-(n,+ nb) = [541

K in n(nb)-In(K j.!)-nb

Cancelling common terms, we obtain:

KT=njnll + (njnb)I [551

Thus we have obtained the expression for an optimal threshold given our initial

criteria.
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4.3.2. Reliability Considerations

Given that the probability distributions associated with the two states we wish to

measure overlap to some extent, some error arising from statistical fluctuation will occur.

In the case of a threshold system we may express the probability of error Pe in the form

of the following equation (assuming that KT has been rounded off to the nearest integer

value):

KT 00

Pe= Y-p(K, (n,+ nb))-p(K T, (n,+ rib)/ 2 + ,p(K, nb) p(Kr, rib)/2  [561
K=O K=Kj-

Where the first and second terms correspond to the cumulative probability of a

bright sample having a value less than the threshold value (resulting in a false dark

result), and the third and fourth terms correspond to the cumulative probability of a dark

sample having a value greater than that of the threshold value (resulting in a false bright

result).

Unfortunately, although the above equation results in a precise value for the

anticipated error rate, it is very difficult to accurately evaluate for large values of K (i.e.

K >> 10) due to the presence of factorial values within the expression for the Poisson

distribution. Under such circumstances, it is possible to approximate the Poisson

distribution in the form of a normal distribution with a mean value of Kmean and a

standard distribution of K,,mean. Under such circumstances it is possible to approximate

the value of P, by the use of the error function erf(x):

Pe=l +(112)erf{IKr-(n,+nb)J/l/12(n,+nb)1]I2 [571

-(1/2)erfl(KT-nb)/N(2nb)]
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Employing this approximation we may calculate the probable rate of error for

large values of n, and rb.

In the case of our present architecture, we may express the value of nb in terms of

n, and the contrast ratio R:

nb= (nNs2)14R [581

We may then calculate the value of Pe as a function of the value of R and n,:

R

n1 10 100 1000 2000

100 0.9304 0.7825 0.3860 0.2236
200 0.9017 0.6963 0.2202 0.0852
300 0.8798 0.6326 0.1332 0.0350
400 0.8613 0.5809 0.0830 0.0149
500 0.8452 0.5371 0.0526 0.0065
600 0.8306 0.4990 0.0337 0.0029
700 0.8173 0.4652 0.0218 0.0013
800 0.8049 0.4350 0.0142 0.0006
900 0.7933 0.4077 0.0093 0.0003

1000 0.7824 0.3828 0.0061 0.0001

Table 2 Probability of error P, as a function of ns and R in the case N,=256.

Examining this table we may immediately deduce several facts. The first is that a

high contrast (->1000) SLM is required in order to achieve reliable low power

operations. Secondly, given high contrast operation, reliable operation may be achieved

with values of ns as low as 900-1000, assuming the absence of other sources of noise.

The selection of a specific value for ns is dependent upon the raw value of

probable error that may be tolerated within the system. This quantity, in turn, is based

Page 30



upon the degree of error correction that the system is capable of and the number of output

errors that may be tolerated within the system. As we have shown within our previous

report[I] the applications that we have proposed for the HOPLA incorporate a high

degree of redundancy which confers a high level of resistance to error. For this reason, it

is conceivable that reliable operation may be achieved with values of n, as small as 900

(assuming R=1000). If higher levels of reliability are required, operation at n,=1000

should be sufficient.

4.3.3. Implications of Low Power Operation.

Although the results of the previous two sections are quite straightforward, the

implications of these results are quite significant. The reason for this is that each of our

operations corresponds to NJ2 logical operations. In the case of N,=256 this corresponds

to 32,768 effective dyadic logical operations being mediated by -1000 photons.

Paradoxically, each photon would appear to be mediating multiple logical operations.

Within this section, we shall account for this apparent paradox and discuss its

implications.

We may gain insight into this problem by noting that none of the photons

mediating a given operation interact. This implies that each photon performs the entire

operation independently. Under such an interpretation, the need for multiple photons

arises from the need for a sufficient statistical sample to overcome the random nature of

the individual outcomes. Under such an interpretation, our computer corresponds to a

variation upon the well known problem of individual photons propagating through a

double-slit aperture[12]. In both cases the location of each photon at the aperture (SLM)
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is indeterminate, and its trajectory is dependent upon the configuration of the entire

aperture.

It is important to note that although each operation corresponds to the equivalent

of thousands of dyadic logical operations its result is always a single bit of information.

For this reason, we may interpret our operations as the measurement of specific

parameter of the aperture (input SLM) which must always take one out of two possible

states. Under such an interpretation, the number of photons required to measure a single

bit of information is quite reasonable when compared with comparable operations

performed within optical comunications[I 0].

The desirability of mediating a large number of dyadic logical operations by

means of a small number of photons is that the effective energy cost per individual

logical operation is exceedingly low. The effective amount of energy consumed per

effective logical operation Eop may be expressed as:

Ep= (2nshc)/(N,2X) [591

Where h is Planck's constant and c is the speed of light. In the case of n,=1000,

X=514 nm and N,=256 the value of Eop is equal to 1.1 79x10 2 0 Joules. In comparison, the

energy of an individual photon at X=514 nm is equal to 3.865x10 1 9 Joules.

It has been postulated[13-15J that the minimal amount of energy that must be

consumed to perform a single dyadic logical operation is equal to In(2)kYT where kB is

Boltzmans constant and T is the temperature (Kelvin)oof the switching mechanism. For a

value of T7=O K the value of In(2)kBT=2.614x10 2 1̀ Jotles. The basic rationale for such a

Page 32



limit is that devices operating under such a limit would switch randomly as a result of

background thermal fluctuations. An alternative interpretation of the of this limit is that

conventional logical operations discard input information and consequently increase the

entropy of the system in doing so. The impact of such a limit is that the waste heat

generated by such energy consumption limits the ultimate size and speed of the logic

gates involved.

A broad variety of schemes have been proposed for logic gates that are capable of

operating at power consumption levels below that of the limit cited[16]. Many of these

schemes employ the concept of Conservative or Reversible logic, a system of logic which

retains sufficient information at each stage of computation to allow for the reversal of the

entire computation. Since the process is reversible, the entropy associated with the data

being processed remains constant, providing for the possibility of implementing such

logic with arbitrarily low power consumption. Although a great many schemes for low

power implementation of conservative logic have been proposed[16], to date no practical

physical implementation exists.

If we compare the effective energy consumption of our operations against that of

the optimal limit we find that Eop1Iln(2)kBTj=4.512 indicating that our effective energy

cost is quite nearly that of the proposed limit. It is equally obvious that if we were able to

achieve reliable operation at n,=220 (assuming increased SLM contrast) the value of Eop

would actually be less than that of ln(2)kB7T implying a violation of the proposed limit.

Furthermore, it is obvious that there is no good reason to believe that the effects of the

proposed limit will come into effect at this signal level, especially given that the signal

actually received by the switching element is several thousand times more intense than

the proposed energy limit. For this reason, it would appear that low power operation of
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our proposed architecture allows for computation at an energy cost below that of

previously considered limits.

4.3.4. The WPD Model

The concept that optics could be used to simultaneously evaluate a large number

of logical operations at a exceedingly low energy cost was originally proposed by

Caulfield and Shamir[2]. They postulated that within certain optical computer

architectures, the energy required to evaluate a given problem did not depend upon the

complexity of the operation but rather the complexity of the output. In order for an

architecture to act in this fashion it must have two properties. It must be "complete", that

is, when performing a given operation each photon must have the same range of possible

trajectories. Secondly the system must be "coherent", that is the photons employed must

have sufficiently similar properties as to propagate through the system in an identical

manner. In other words, the individual photon trajectories must be egrodic for each

operation. Caulfield has dubbed such a strategy Wave Particle Duality (WPD)

computing, although the term single-photon computing would be equally descriptive.

Two examples of optical architectures which are capable of WPD operations are optical

correlators[2] and our present architecture.

A variety of arguments have been advanced citing various possible flaws within

the WPD model. We shall now address such arguments.

A variety of arguments rest upon the misconception that the WPD model consists

of a means of implementing some form of conservative logic and is consequently subject

to weaknesses associated with that model. Although the WPD model bears certain
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abstruse similarities to conservative logic models, it is radically different in most

respects. Each operation within the WPD model employs a large number of inputs and

discards the bulk of this information to obtain a single bit output. In comparison

conservative logic operations are dyadic and retain all of the information associated with

the input, allowing for the reversal of the operation if necessary. Within the WPD model,

each switching element consumes considerably more energy than that present within the

thermal background, assuring a reliable and irreversible state transition. Within

conservative logic, each logic gate consumes a negligible amount of energy and may be

subject to reversal during computation. Finally, the WPD model accepts a fixed energy

cost for each output which it seeks to amortize by the complexity of the operations

performed. In comparison, conservative logic systems presume that operations may

occur at no energy cost, and that a small amount of energy is consumed to ensure forward

operation.

Given the differences between the WPD model and the conservative logic model

which we have cited above, it is obvious that it is immune to several of the major

problems associated with the latter model. The WPD model is not subject to "arrow of

time" problems in that it employs irreversible switching at each stage of computation,

allowing for fixed bounds on the speed and reliability of computation. Since it need not

be reversible, a WPD computer does not require retaining a large number of garbage bits

as conservative logic systems require. Finally since each switching device operates at

energy levels considerably in excess of the thermal limit they may be implemented

without recourse to exotic physical processes, such as required for proposed

implementations of conservative logic.
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Another possible fallacy associated with our reasoning is that the propsed limit

holds only for dydadic logic operations and that the use of high fan-in operations amounts

to an evasion of the limit. It is most certainly true that the WPD method achieves its low

effective power consumption by means of high fan-in operations. But, if such a method

allows us to implement logical functions with comparable reliability, yet at intrinsically

lower power dissipation levels, there is no good reason why such a method is not valid.

In the history of logic design, a variety of different means of implementing digital logic

have been employed, the rationale for all such methods has always been superior

performance.

A similar objection to WPD methods is that they are intrinsically analog. In

reality, all known means of implementing digital logic are "analog" in nature. The

criteria for a digital logic device is that it accept discrete inputs and generate discrete,

deterministic outputs. Obviously, it is more difficult to implement high fan-in digital

logic, but the logic remains digital.

It may be argued that high fan-in operations are uncommon and therefore not well

suited to the implementation of general purpose logic. Our previous report illustrated

that it is possible to implement arbitrary finite automatons by the use of high fan-in

digital logic, as well as ample evidence for a variety of useful algorithms which optimally

exploit high fan-in operations. Although it is not possible to solely employ high fan-in

logic, it is possible to ensure that such operations predominate within most practical

operations.

It has been argued that it is possible to indefinitely inflate the effective number of

logical operations ascribed to our scheme. Such an argument claims that operations
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which do not contribute to our results or that the information content of the input has

been over estimated. Examination of the interconnection patterns described within our

previous report reveals the following facts: Each bit within the input is independent of the

state of any other and both of its possible states are equally probable, assuring maximal

information content. Each input bit triggers a set of outputs which are unique to that bit

and necessary to proper operation of the algorithm. Finally, any attempt to subdivide

input bits (so as to inflate the number of operations) would not only fail to generate

additional information but also invalidate the threshold levels employed in the switching

devices.

In regard to the low power operation of our present architecture, it has been

argued that the high attenuation rates and low efficiencies associated with present

implementations nullify any claim to low power operation. Such an argument confuses

the means with the end. Our present implementation serves as a "proof of concept" and

verifies the same physical principles as a highly efficient implementation would provide.

To provide an analogy, a large fraction of the design strategies employed within modem

computers were first employed within vacum tube or relay based designs (or even

Babbage's mechanical units). The fact that such schemes were first proven upon

incredibly primitive, unreliable, and inefficient machines does not detract in the slightest

from their present merit or utility.

The final argument relative to the validity of the WPD method and our present

architecture is as follows: Even with perfect efficiency, the WPD model does not account

for the photons which are discarded, and thus not accounted for as mediating photons.

We shall now address these arguments.
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It is important to note that the photons discarded within one operation carry the

result of the same operation performed upon the complement of the input data. As such,

this signal may often be put to good use. As an example, the I and d functions employed

within our previous report[I] have this relationship and may be implemented

simultaneously without the need to discard any light at all. Similar designs may be

employed within other applications in order to minimize the quantity of light which is

discarded. Unfortunately, this merely leads to an unbalanced signal arriving at the

complementary outputs, forcing one of the outputs to sink the previously discarded light.

Given that WPD capable analog operations do not encounter the discarded light

problem[2] it is reasonable to assume that problem of discarded light arises within our

present architecture as a result of the use of amplitude encoded logic. For this reason it

may be possible to address the problem of discarded light by employing some form of

phase encoded logic.

The presence of discarded light implies that although each switching device

expends a maximum energy of Eop per equivalent dydadic logical operation, the net

energy expended by the system may be much higher. We argue that it is the energy

expended by the switching device that is important. It is the heat dissipation generated

by the energy which is consumed by the switching elements within a computer which

limits its ultimate speed. For this reason, it is the energy consumed by the switching

element which is the limit that is significant.

5. Conclusion
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Within the present report we have attempted to model the operation of a HOPLA

architecture implementing the multiread function. We have examined how diffraction

effects dictate the various limits to the design and fabrication of our system.

We have also considered the power consumption of our architecture. We have

shown that in low power operation, when shot noise predominates, that the power

consumption of our system is of a significantly low level. We have seen that Caulfield's

WPD model of low power operation accounts for such effects, and that successful low

power operation of our system should verify aspects of this model.
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